Künstliche Intelligenz (KI) ist eines der Trendthemen schlechthin. Geht es um konkrete Geschäftsvorteile und Einsatzmöglichkeiten, fragt sich so mancher jedoch: Was ist KI eigentlich genau, und was bringt es wirklich? Die ERP-Experten von godesys warnen in diesem Zusammenhang: KI werde zwar oft als Allheilmittel angepriesen, bislang würden aber nur Standardlösungen eingesetzt, die für Marketingzwecke einen KI-Anstrich erhielten. Dies habe, so godesys, mit der eigentlichen Technologie, dem Deep Learning, das sich beispielsweise in Sprach-, Verhaltens- oder Gesichtserkennung finde, nichts zu tun. Das Problem: Unternehmen mangelt es heute noch an fundierten Datenverarbeitungsmöglichkeiten, um derartige Verhaltensmuster effektiv zu analysieren.

Godelef Kühl, Gründer und Vorstandsvorsitzender der godesys AG, erläutert: „Künstliche Intelligenz bedeutet letztendlich, dass ein Computer in der Lage ist, menschliche Intelligenz nachzuahmen und eine Entscheidung zu treffen. Im ERP-Bereich ist das schon sehr lange möglich. Ein Beispiel: Aufgrund von Lagerdaten und Absatzzahlen lässt sich im ERP genau vorhersagen, welches Produkt nachbestellt werden muss. Diese manuell zu erledigen, ist bei riesigen Produktmengen ein enormer Aufwand, den der Computer abnimmt. Die Kernkompetenz von ERP ist so betrachtet künstliche Intelligenz.“ Entsprechend könne immer dann von KI gesprochen werden, wenn ein Computer einen Algorithmus verarbeite und zu einem Ergebnis komme.

Einen Schritt weiter geht das Maschinelle Lernen, bei dem Entscheidungen auf Algorithmen sowie Erfahrungen basieren. Hierbei werden Stochastik und historische Daten benötigt, die ebenfalls bereits seit vielen Jahren zum Einsatz kommen. Beispiel Lagerverwaltung: Hier lassen sich mithilfe von Algorithmen und historischen Daten Trendprognosen aufstellen, etwa dazu, wie sich der Absatz entwickeln wird.

Künstliche Intelligenz, die über diese Möglichkeiten hinaus geht, umfasst hingegen Funktionen des Deep Learnings. Vertieftes Lernen bedeutet, dass Maschinen auf Basis eines neuronalen Netzes eigenständig trainieren und zu Ergebnissen kommen, die nicht im Ursprungsalgorithmus einprogrammiert waren. Beispiele sind Gesichts- oder Spracherkennung. „Für dieses Deep Learning gibt es in derzeitigen ERP-Systemen aber noch keine wirklich funktionierenden Ansätze“, erklärt Kühl. Zwar seien beispielsweise Chatbots in Verbindung mit dem ERP durchaus möglich, aktuell vielerorts aber zu kosten- und datenintensiv. Sie würden keinen ausreichenden Effizienzgewinn bieten, sodass sie insbesondere für den Mittelstand keine wirklich realisierbare Option darstellten.

Dennoch würden viele große ERP-Anbieter derzeit mit neuen KI-Services werben. „Diese Funktionen sind alles andere als neu. ERP-Lösungen bekommen einen KI-Anstrich, auch wenn sie immer schon mit Algorithmen gearbeitet haben. Mit wirklicher KI, also Deep Learning, hat das nichts zu tun“, warnt Kühl. Es mache keinen Sinn, einem Hype hinterherzujagen, wenn nicht klar sei, wo der Nutzen für das eigene Unternehmen liegen könnte. „Wer eine Geschäftssoftware oder andere computergestützte Verfahren einsetzt, kann sich entspannt zurücklehnen, denn das ist im weitesten Sinne ja bereits KI.“

Daher gilt bei allen ERP-Angeboten – egal, ob sich diese mit KI schmücken oder nicht: Unternehmen sollten stets genau überlegen, was sie wirklich benötigen und wo sich Marketing-Botschaften als heiße Luft entlarven lassen.

godesys